首页> 外文OA文献 >Determining surfaces of revolution from their implicit equations
【2h】

Determining surfaces of revolution from their implicit equations

机译:从隐式方程确定旋转曲面

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Results of number of geometric operations (often used in technical practise,as e.g. the operation of blending) are in many cases surfaces describedimplicitly. Then it is a challenging task to recognize the type of the obtainedsurface, find its characteristics and for the rational surfaces compute alsotheir parameterizations. In this contribution we will focus on surfaces ofrevolution. These objects, widely used in geometric modelling, are generated byrotating a generatrix around a given axis. If the generatrix is an algebraiccurve then so is also the resulting surface, described uniquely by a polynomialwhich can be found by some well-established implicitation technique. However,starting from a polynomial it is not known how to decide if the correspondingalgebraic surface is rotational or not. Motivated by this, our goal is toformulate a simple and efficient algorithm whose input is a polynomial with thecoefficients from some subfield of $\mathbb{R}$ and the output is the answerwhether the shape is a surface of revolution. In the affirmative case we alsofind the equations of its axis and generatrix. Furthermore, we investigate theproblem of rationality and unirationality of surfaces of revolution and showthat this question can be efficiently answered discussing the rationality of acertain associated planar curve.
机译:在许多情况下,几何操作的结果(通常在技术实践中经常使用,例如混合操作)是对表面的隐式描述。然后,要识别获得的曲面的类型,找到其特征并为合理的曲面计算其参数化是一项艰巨的任务。在这一贡献中,我们将关注革命的表面。这些对象在几何建模中广泛使用,是通过围绕给定轴旋转母线生成的。如果母线是代数曲线,则生成的曲面也是如此,该曲面由多项式唯一描述,可以通过一些公认的隐式技术找到该曲面。然而,从多项式开始,不知道如何确定相应的代数曲面是否是旋转的。因此,我们的目标是构造一个简单而有效的算法,其输入是一个多项式,其系数来自$ \ mathbb {R} $的某个子字段,并且输出是形状是否为旋转曲面的答案。在肯定的情况下,我们还找到其轴和母线的方程式。此外,我们研究了旋转曲面合理性和统一性的问题,并表明讨论某些相关平面曲线的合理性可以有效地回答这个问题。

著录项

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号